Tag: Shapes

Creating CSS Shapes with Emoji

CSS Shapes is a standard that lets us create geometric shapes over floated elements that cause the inline contents — usually text — around those elements to wrap along the specified shapes.

Such a shaped flow of text looks good in editorial designs or designs that work with text-heavy contents to add some visual relief from the chunks of text.

Here’s an example of CSS Shape in use:

The shape-outside property specifies the shape of a float area using either one of the basic shape functions — circle(), ellipse(), polygon() or inset() — or an image, like this:

Inline content wraps along the right side of a left-floated element, and the left side of a right-floated element.

In this post, we’ll use the concept of CSS Shapes with emoji to create interesting text-wrapping effects. Images are rectangles. Many of the shapes we draw in CSS are also boxy or at least limited to standard shapes. Emoji, on the other hand, offers neat opportunities to break out of the box!

Here’s how we’ll do it: We’ll first create an image out of an emoji, and then float it and apply a CSS Shape to it.

I’ve already covered multiple ways to convert emojis to images in this post on creative background patterns. In that I said I wasn’t able to figure out how to use SVG <text> to do the conversion, but I’ve figured it out now and will show you how in this post.  You don’t need to have read that article for this one to make sense, but it’s there if you want to see it.

Let’s make an emoji image

The three steps we’re using to create an emoji image are:

  • Create an emoji-shaped cutout in SVG
  • Convert the SVG code to a DataURL by URL encoding and prefixing it with data:image/svg+xml
  • Use the DataURL as the url() value of an element’s background-image.

Here’s the SVG code that creates the emoji shaped cutout:

<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'>    <clipPath id='emojiClipPath'>      <text x='0' y='130px' font-size='130px'>🦕</text>    </clipPath>    <text x='0' y='130px' font-size='130px' clip-path='url(#emojiClipPath)'>🦕</text> </svg>

What’s happening here is we’re providing a <text> element with an emoji character for a <clipPath>. A clip path is an outline of a region to be kept visible when that clip path is applied to an element. In our code, that outline is the shape of the emoji character.

Then the emoji’s clip path is referenced by a <text> element carrying the same emoji character, using its clip-path property, creating a cutout in the shape of the emoji.

Now, we convert the SVG code to a DataURL. You can URL encode it by hand or use online tools (like this one!) that can do it for you.

Here’s the resulted DataURL, used as the url() value for the background image of an .emoji element in CSS:

.emoji {   background: url("data:image/svg+xml,<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'> <clipPath id='emojiClipPath'> <text x='0' y='130px'  font-size='130px'>🦕</text> </clipPath> <text x='0' y='130px' font-size='130px' clip-path='url(%23emojiClipPath)'>🦕</text></svg>"); }

If we were to stop here and give the .emoji element dimensions, we’d see our character displayed as a background image:

Now let’s turn this into a CSS Shape

We can do this in two steps:

  • Float the element with the emoji background
  • Use the DataURL as the url() value for the element’s shape-outside property
.emoji {   --image-url: url("data:image/svg+xml,<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'> <clipPath id='emojiClipPath'> <text x='0' y='130px'  font-size='130px'>🦕</text> </clipPath> <text x='0' y='130px'  font-size='130px' clip-path='url(#emojiClipPath)'>🦕</text></svg>");   background: var(--image-url);   float: left;   height: 150px;   shape-outside: var(--image-url);   width: 150px;   margin-left: -6px;  }

We placed the DataURL in a custom property, --image-url, so we can easily refer it in both the background and the shape-outside properties without repeating that big ol’ string of encoded SVG multiple times.

Now, any inline content near the floated .emoji element will flow in the shape of the emoji. We can adjust things even further with margin or shape-margin to add space around the shape.

If you want a color-blocked emoji shape, you can do that by applying the clip path to a <rect> element in the SVG:

<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'>      <clipPath id='emojiClipPath'>          <text x='0' y='130px' font-size='130px'>🦕</text>      </clipPath>      <rect x='0' y='0' fill='green' width='150px' height='150px' clip-path='url(#emojiClipPath)'/>  </svg>

The same technique will work with letters!

Just note that Firefox doesn’t always render the emoji shape. We can work around that by updating the SVG code.

<svg xmlns='http://www.w3.org/2000/svg' width='150px' height='150px'>   <foreignObject width='150px' height='150px'>     <div xmlns='http://www.w3.org/1999/xhtml' style='width:150px;height:150px;line-height:150px;text-align:center;color:transparent;text-shadow: 0 0 black;font-size:130px;'>🧗</div>   </foreignObject> </svg>

This creates a block-colored emoji shape by making the emoji transparent and giving it text-shadow with inline CSS. The <div> containing the emoji and inline CSS style is then inserted into a <foreignObject> element of SVG so the HTML <div> code can be used inside the SVG namespace. The rest of the code in this technique is same as the last one.

Now we need to center the shape

Since CSS Shapes can only be applied to floated elements, the text flows either to the right or left of the element depending on which side it’s floated. To center the element and the shape, we’ll do the following:

  • Split the emoji in half
  • Float the left-half of the emoji to the right, and the right-half to the left
  • Put both sides together!

One caveat to this strategy: if you’re using running sentences in the design, you’ll need to manually align the letters on both sides.

Here’s what we’re aiming to make:

First, we see the HTML for the left and right sides of the design. They are identical.

<div id="design">   <p id="leftSide">A C G T A <!-- more characters --> C G T A C G T A C G T <span class="emoji"></span>A C G <!-- more characters --> C G T </p>   <p id="rightSide">A C G T A <!-- more characters --> C G T A C G T A C G T <span class="emoji"></span>A C G <!-- more characters --> C G T </p> </div>

p#leftSide and p#rightSide inside #design are arranged side-by-side in a grid.

#design {   border-radius: 50%; /* A circle */   box-shadow: 6px 6px 20px silver;   display: grid;    grid: "1fr 1fr"; /* A grid with two columns */   overflow: hidden;   width: 400px; height: 400px; }

Here’s the CSS for the emoji:

span.emoji {   filter: drop-shadow(15px 15px 5px green);   shape-margin: 10px;   width: 75px;    height: 150px; }  /* Left half of the emoji */ p#leftSide>span.emoji {   --image-url:url("data:image/svg+xml,<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'> <clipPath id='emojiClipPath'> <text x='0' y='130px'  font-size='130px'>🦎</text> </clipPath> <rect x='0' y='0' width='150px' height='150px' clip-path='url(%23emojiClipPath)'/></svg>");   background-image: var(--image-url);   float: right;   shape-outside: var(--image-url); }  /* Right half of the emoji */ p#rightSide>span.emoji {   --image-url:url("data:image/svg+xml,<svg width='150px' height='150px' xmlns='http://www.w3.org/2000/svg'> <clipPath id='emojiClipPath'> <text x='-75px' y='130px'  font-size='130px'>🦎</text> </clipPath> <rect x='0' y='0' width='150px' height='150px' clip-path='url(%23emojiClipPath)'/></svg>");   background-image: var(--image-url);   float: left;   shape-outside: var(--image-url); }

The width of the <span> elements that hold the emoji images (span.emoji) is 75px whereas the width of the SVG emoji images is 150px. This automatically crops the image in half when displayed inside the spans.

On the right side of the design, with the left-floated emoji (p#rightSide>span.emoji), we need to move the emoji halfway to the left to show the right-half, so the x value in the <text> in the DataURL is changed to 75px. That’s the only difference in the DataURLs from the left and right sides of the design.

Here’s that result once again:

That’s it! You can try the above method to center any CSS Shape as long as you can split the element up into two and put the halves back together with CSS.

The post Creating CSS Shapes with Emoji appeared first on CSS-Tricks.

You can support CSS-Tricks by being an MVP Supporter.


, ,

How to Simplify SVG Code Using Basic Shapes

There are different ways to work with icons, but the best solution always includes SVG, whether it’s implemented inline or linked up as an image file. That’s because they’re “drawn” in code, making them flexible, adaptable, and scalable in any context.

But when working with SVG, there’s always the chance that they contain a lot of unnecessary code. In some cases, the code for an inline SVG can be long that it makes a document longer to scroll, uncomfortable to work with, and, yes, a little bit heavier than it needs to be.

We can work around this reusing chunks of code with the <use> element or apply native variables to manage our SVG styles from one place. Or, if we’re working in a server-side environment, we can always sprinkle in a little PHP (or the like) to extract the contents of the SVG file instead of dropping it straight in.

That’s all fine, but wouldn’t be great if we could solve this at the file level instead of resorting to code-based approaches? I want to focus on a different perspective: how to make the same figures with less code using basic shapes. This way, we get the benefits of smaller, controllable, and semantic icons in our projects without sacrificing quality or visual changes. I’ll go through different examples that explore the code of commonly used icons and how we can redraw them using some of the easiest SVG shapes we can make.

Here are the icons we’ll be working on:

Showing an close icon in the shape of an x, a clock with the hands pointing at 3 o-clock, and a closed envelope.

Let’s look at the basic shapes we can use to make these that keep the code small and simple.

Psssst! Here is a longer list of simple icons I created on holasvg.com! After this article, you’ll know how to modify them and make them your own.

Simplifying a close icon with the <line> element

This is the code for the “close” or “cross” icon that was downloaded from flaticon.com and built by pixel-perfect:

In this example, everything is happening inside the <path> with lots of commands and parameters in the data attribute (d). What this SVG is doing is tracing the shape from its borders.

A quick demonstration using mavo.io

If you are familiar with Illustrator, this is the equivalent of drawing two separate lines, converting them to shape, then combining both with the pathfinder to create one compound shape.

The <path> element allows us to draw complex shapes, but in this case, we can create the same figure with two lines, while keeping the same appearance:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="50" height="50" overflow="visible" stroke="black" stroke-width="10" stroke-linecap="round">    <line x1="0" y1="0" x2="50" y2="50" />    <line x1="50" y1="0" x2="0" y2="50" /> </svg>

We started by defining a viewBox that goes from 0,0 to 50,50. You can choose whatever dimensions you prefer; the SVG will always scale nicely to any width and height you define. To make things easier, in this case, I also defined an inline width and height of 50 units, which avoids extra calculations in the drawing.

To use the <line> element, we declare the coordinates of the line’s first point and the coordinates of its last point. In this specific case, we started from x=0 y=0 and ended at x=50 y=50.

Grid of the coordinate system.

Here’s how that looks in code:

<line x1="0" y1="0" x2="50" y2="50" />

The second line will start from x=50 y=0 and end at x=0 y=50:

<line x1="50" y1="0" x2="0" y2="50" />

An SVG stroke doesn’t have a color by default — that’s why we added the black value on the stroke attribute. We also gave the stroke-width attribute a width of 10 units and the stroke-linecap a round value to replicate those rounded corners of the original design. These attributes were added directly to the <svg> tag so both lines will inherit them.

<svg ... stroke="black" stroke-width="10" stroke-linecap="round" ...>

Now that the stroke is 10 units bigger that its default size of 1 unit, the line might get cropped by the viewBox. We can either move the points 10 units inside the viewBox or add overflow=visible to the styles.

The values that are equal to 0 can be removed, as 0 is the default. That means the two lines end up with two very small lines of code:

<line x2="50" y2="50" /> <line x1="50" y2="50" />

Just by changing a <path> to a <line>, not only did we make a smaller SVG file, but a more semantic and controllable chunk of code that makes any future maintenance much easier. And the visual result is exactly the same as the original.

Same cross, different code.

Simplifying a clock icon with the <circle> and <path> elements

I took this example of a clock icon created by barracuda from The Noun Project:

This shape was also drawn with a <path>, but we also have a lot of namespaces and XML instructions related to the software used and the license of the file that we can delete without affecting the SVG. Can you tell what illustration editor was used to create the icon?

Let’s recreate this one from scratch using a circle and a path with simpler commands. Again, we need to start with a viewBox, this time from 0,0 to 100,100, and with a width and height matching those units.

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100" width="100" height="100" fill="none" stroke="black" stroke-width="10" stroke-linecap="round" stroke-linejoin="round">   <circle cx="50" cy="50" r="40"/>   <path d="M50 25V50 H75" />  </svg>

We keep the same styles as the previous icon inside the <svg> tag. fill is black by default, so we need to explicitly give it a none value to remove it. Otherwise, the circle will have have a solid black fill, obscuring the other shapes.

To draw the <circle> we need to indicate a center point from where the radius will sit. We can achieve that with cx (center x) and cy (center y). Then r (radius) will declare how big our circle will be. In this example, the radius is slightly smaller than the viewBox, so it doesn’t get cropped when the stroke is 10 units wide.

What’s up with all those letters? Check out Chris Coyier’s illustrated guide for a primer on the SVG syntax.

We can use a <path> for the clock hands because it has some very useful and simple commands to draw. Inside the d (data) we must start with the M (move to) command followed by the coordinates from where we’ll start drawing which, in this example, is 50,25 (near the top-center of the circle). 

After the V (vertical) command, we only need one value as we can only move up or down with a negative or positive number. A positive number will go down. The same for H (horizontal) followed by a positive number, 75, that will draw toward the right. All commands are uppercase, so the numbers we choose will be points in the grid. If we decided to use lowercase (relative commands) the numbers will be the amount of units that we move in one direction and not an absolute point in the coordinate system.

Same clock, different code.

Simplifying an envelope icon with the <rect> and <polyline> elements

I drew the envelope icon in Illustrator without expanding the original shapes. Here’s the code that came from the export:

Illustrator offers some SVG options to export the graphic. I chose “Style Elements” in the “CSS Properties” dropdown so I can have a <style> tag that contains classes that I might want to move to a CSS file. But there are different ways to apply the styles in SVG, of course.

We already have basic shapes in this code! I unselected the “Shape to paths” option in Illustrator which helped a lot there. We can optimize this further with SVGOMG to remove the comments, XML instructions, and unnecessary data, like empty elements. From there, we can manually remove other extras, if we need to.

We already have something a little more concise:

<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 310 190" xml:space="preserve">   <style>.st0{fill:none;stroke:#000;stroke-width:10;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10}   </style><rect x="5" y="5" class="st0" width="300" height="180"/>   <polyline class="st0" points="5 5 155 110 305 5"/> </svg>

We can remove even more stuff without affecting the visual appearance of the envelope, including: 

  • version="1.1" (this has been deprecated since SVG 2)
  • id="Layer_1" (this has no meaning or use)
  • x="0" (this is a default value)
  • y="0" (this is a default value)
  • xml:space="preserve" (this has been deprecated since SVG 2)
<svg xmlns="http://www.w3.org/2000/svg" x="0" y="0" viewBox="0 0 310 190">   <style>.st0{fill:none;stroke:#000;stroke-width:10;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10}   </style>   <rect x="5" y="5" class="st0" width="300" height="180"/>   <polyline class="st0" points="5 5 155 110 305 5"/> </svg>

We can move the CSS styles to a separate stylesheet if we really want to get really aggressive.

<rect> needs a starting point from where we’ll extend a width and a height, so let’s use  x="5" and y="5" which is our top-left point. From there, we will create a rectangle that is 300 units wide with a height of 180 units. Just like the clock icon, we’ll use 5,5 as the starting point because we have a 10-unit stroke that will get cropped if the coordinates were located at 0,0.

<polyline> is similar to <line>, but with an infinite amount of points that we define, like pairs of coordinates, one after the other, inside the points attribute, where the first number in the pair will represent x and the second will be y. It’s easier to read the sequence with commas, but those can be replaced with whitespace without having an impact on the result.

Same envelope, different code.

Bonus shapes!

I didn’t include examples of icons that can be simplified with <polygon> and <ellipse> shapes, but here is a quick way to use them.

<polygon> is the same as <polyline>, only this element will always define a closed shape. Here’s an example that comes straight from MDN:

Remember the circle we drew earlier for the clock icon? Replace the r (radius) with rx and ry. Now you have two different values for radius. Here’s another example from MDN:

Wrapping up

We covered a lot here in a short amount of time! While we used examples to demonstrates the process of optimizing SVGs, here’s what I hope you walk away with from this post:

  • Remember that compression starts with how the SVG is drawn in illustration software.
  • Use available tools, like SVOMG, to compress SVG.
  • Remove unnecessary metadata by hand, if necessary.
  • Replace complex paths with basic shapes.
  • <use> is a great way to “inline” SVG as well as for establishing your own library of reusable icons.

How many icons can be created by combining these basic shapes? 

I’m working my list on holasvg.com/icons, I’ll be constantly uploading more icons and features here, and now you know how to easily modified them just by changing a few numbers. Go ahead and make them yours!

The post How to Simplify SVG Code Using Basic Shapes appeared first on CSS-Tricks.

You can support CSS-Tricks by being an MVP Supporter.


, , , ,

Creative Background Patterns Using Gradients, CSS Shapes, and Even Emojis

You can create stripes in CSS. That’s all I thought about in terms of CSS background patterns for a long time. There’s nothing wrong with stripes; stripes are cool. They can be customized into wide and narrow bands, criss-crossed into a checked pattern, and played with in other ways using the idea of hard stops. But stripes can be boring, too. Too conventional, out of fashion, and sometimes even unpleasant.

Thankfully, we can conjure up far more background patterns than you can even imagine with CSS, with code that is similar in spirit to stripes.

Background patterns are images repeated across a background. They can be done by referencing an external image, like a PNG file, or can be drawn with CSS, which is traditionally done using CSS gradients. 

Linear gradients (and repeating linear gradients) for instance, are typically used for stripes. But there are other ways to create cool background patterns. Let’s see how we can use gradients in other ways and toss in other things, like CSS shapes and emoji, to spice things up.

Gradient patterns

There are three types of CSS gradients.

Linear (left), radial (center) and conic (right) gradients
  1. linear-gradient(): Colors flow from left-to-right, top-to-bottom, or at any angle you choose in a single direction.
  2. radial-gradient(): Colors start at a single point and emanate outward
  3. conic-gradient(): Similar in concept to radial gradients, but the color stops are placed around the circle rather than emanating from the center point.

I recommend checking out the syntax for all the gradients to thoroughly understand how to start and end a color in a gradient.

Radial gradient patterns

Let’s look at radial gradients first because they give us very useful things: circles and ellipses. Both can be used for patterns that are very interesting and might unlock some ideas for you!

background: radial-gradient(<gradient values>)

Here’s a pattern of repeating watermelons using this technique:

background:  	radial-gradient(circle at 25px 9px, black 2px, transparent 2px),  	radial-gradient(circle at 49px 28px, black 2px, transparent 2px),  	radial-gradient(circle at 38px 1px, black 2px, transparent 2px),  	radial-gradient(circle at 20px 4px, black 2px, transparent 2px),  	radial-gradient(circle at 80px 4px, black 2px, transparent 2px),  	radial-gradient(circle at 50px 10px, black 2px, transparent 2px),  	radial-gradient(circle at 60px 16px, black 2px, transparent 2px),  	radial-gradient(circle at 70px 16px, black 2px, transparent 2px),  	radial-gradient(ellipse at 50px 0, red 33px, lime 33px, lime 38px, transparent 38px)  	white; background-size: 100px 50px;

We start by providing a background size on the element then stack up the gradients inside it. An ellipse forms the green and red parts. Black circles are scattered across to represent the watermelon seeds. 

The first two parameters for a radial gradient function determine whether the gradient shape is a circle or an ellipse and the starting position of the gradient. That’s followed by the gradient color values along with the start and ending positions within the gradient.

Conic gradient patterns

Conic gradients create ray-like shapes. Like linear and radial gradients, conic gradients can be used to create geometric patterns.

background: conic-gradient(<gradient values>)
background:    conic-gradient(yellow 40deg, blue 40deg, blue 45deg, transparent 45deg),    conic-gradient(transparent 135deg, blue 135deg, blue 140deg, transparent 140deg) ; background-size: 60px 60px; background-color: white;

The rub with conic gradient is that it’s not supported in Firefox, at least at the time of writing. It’s always worth keeping an eye out for deeper support.

This browser support data is from Caniuse, which has more detail. A number indicates that browser supports the feature at that version and up.


Chrome Firefox IE Edge Safari
69 No No 79 12.1

Mobile / Tablet

Android Chrome Android Firefox Android iOS Safari
81 No 81 12.2-12.4

Emoji icon patterns

This is where things begin to get interesting. Rather than just using geometric patterns (as in gradients), we now use the organic shapes of emojis to create background patterns. 🎉 

It starts with emoji icons. 

Solid-color emoji patterns

We can create emoji icons by giving emojis a transparent color and text shadow.

color: transparent; text-shadow: 0 0 black;

Those icons can then be turned into an image that can be used as a background, using SVG.

<svg>   <foreignObject>     <!-- The HTML code with emoji -->   </foreignObject> </svg>

The SVG can then be referred by the background property using data URL

background: url("data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><!-- SVG code --></svg>");

And, voilá! We get something like this:

background:      url("data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><foreignObject width=%22100px%22 height=%22100px%22><div xmlns=%22http://www.w3.org/1999/xhtml%22 style=%22color:transparent;text-shadow: 0 0 %23e42100, -2px 2px 0 black;font-size:70px%22>🏄‍♀️</div></foreignObject></svg>"),      white;  background-size: 60px 60px; 

Other than emojis, it’s also possible to draw CSS shapes and use them as patterns. Emojis are less work, though. Just saying. 

Gradient-colored emoji patterns

Instead of using plain emoji icons, we can use gradient emoji icons. To do that, skip the text shadow on the emojis. Add a gradient background behind them and use background-clip to trim the gradient background to the shape of the emojis. 

color: transparent; background: linear-gradient(45deg, blue 20%, fuchsia); background-clip: text; /* Safari requires -webkit prefix */

Then, just as before, use the combination of SVG and data URL to create the background pattern.

Translucent-colored emoji patterns

This is same as using block colored emoji icons. This time, however, we take away the opaqueness of the colors by using rgba() or hsla() values for the text shadow. 

color: transparent; text-shadow: 20px 10px rgba(0, 255, 0, .3),               0 0 red;

SVG-text emoji patterns

We’ve already looked at all the working methods I could think of to create background patterns, but I feel like I should also mention this other technique I tried, which is not as widely supported as I’d hoped.

 I tried placing the emoji in an SVG <text> element instead of the HTML added using <foreignObject>. But I wasn’t able to create a solid shadow behind it in all the browsers.

background:    url("data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text y=%221em%22 font-size=%2270%22 fill=%22transparent%22 style=%22text-shadow: 0 0 %23e42100, -2px 2px 5px black, 0 0 6px white; ;%22>🏄‍♀️</text></svg>") 

Just in case, I tried using CSS and SVG filters for the shadow as well, thinking that might work. It didn’t. I also tried using the stroke attribute, to at least create an outline for the emoji, but that didn’t work, either. 

CSS element() patterns

I didn’t think of SVG when I first thought of converting emoji icons or CSS shapes into background images. I tried CSS element(). It’s a function that directly converts an HTML element into an image that can be referenced and used. I really like this approach, but browser support is a huge caveat, which is why I’m mentioning it here at the end.

Basically, we can drop an element in the HTML like this:

<div id=snake >🐍</div>

…then pass it into the element() function to use like an image on other elements, like this:

background:    -moz-element(#snake), /* Firefox only */   linear-gradient(45deg, transparent 20px, blue 20px, blue 30px, transparent 30px)    white; background-size: 60px 60px; background-color: white;

Now that snake emoji is technically an image that we get to include in the pattern.

Again, browser support is spotty, making this approach super experimental.

This browser support data is from Caniuse, which has more detail. A number indicates that browser supports the feature at that version and up.


Chrome Firefox IE Edge Safari
No 4* No No No

Mobile / Tablet

Android Chrome Android Firefox Android iOS Safari
No 68* No No

In this method, the original emoji (or any CSS shape for that matter) used for the background pattern needs to render on screen for it to appear in the background pattern as well. To hide that original emoji, I used mix-blend-mode — it sort of masks out the original emoji in the HTML so it doesn’t show up on the page.

I hope you find the methods in this post useful in one way or another and learned something new in the process! Give them a try. Experiment with different emojis and CSS shapes because gradients, while cool and all, aren’t the only way to make patterns.. The background property takes multiple values, allowing us to think of creative ways to stack things.

The post Creative Background Patterns Using Gradients, CSS Shapes, and Even Emojis appeared first on CSS-Tricks.


, , , , , , ,

The Many Ways to Link Up Shapes and Images with HTML and CSS

Different website designs often call for a shape other than a square or rectangle to respond to a click event. Perhaps your site has some kind of tilted or curved banner where the click area would be awkwardly large as a straight rectangle. Or you have a large uniquely shaped logo where you only want that unique shape to be clickable. Or you have an interactive image that responds differently when different regions of it are clicked.

You can surround those assets with an un-styled <a> tag to get a clickable rectangle that’s approximately the right size. However, you can also control the shape of that region with different techniques, making sure the target for your click area exactly matches what’s visible on the screen.

SVG shapes

If your click target is an image or a portion of an image, and you have the ability to choose SVG as its format, you already have a great deal of control over how that element will behave on your page. The simplest way to make a portion of an SVG clickable is to add an an SVG hyperlink element to the markup. This is as easy as wrapping the target with an <a> tag, just as you would a nested html element. Your <a> tag can surround a simple shape or more complex paths. It can surround a group of SVG elements or just one. In this example the link for the bullseye wraps a single circle element, but the more complex arrow shape is made up of two polygons and a path element.

See the Pen
target svg
by Bailey Jones (@bailey_jones)
on CodePen.

Note that I’ve used the deprecated xlink:href property in this demo to ensure that the link will work on Safari. The href alone would have worked in Internet Explorer, Chrome, and Firefox.

The only trick here is to make sure the <a> tag is inside the SVG markup and that the tag wraps the shape you want to be clickable. The viewbox for this SVG is still a rectangle, so wrapping the entire SVG element wouldn’t have the same effect.

Image maps

Let’s say you don’t have control over the SVG markup, or that you need to add a clickable area to a raster image instead. It’s possible to apply a clickable target to a portion of an <img> tag using an image map.

Image maps are defined separately from the image source. The map will effectively overlay the entire image element, but it’s up to you to define the clickable area. Unlike the hyperlink element in the SVG example, the coordinates in the image map don’t have anything to do with the definition of the source image. Image maps have been around since HTML 3, meaning they have excellent browser support. However, they can’t be styled with CSS alone to provide interactive cues, like we were able to do with SVG on hover — the cursor is the only visual indicator that the target area of the image can be clicked. There are, however, options for styling the areas with JavaScript.

W3 Schools has an excellent example of an image map using a picture of the solar system where the sun and planets are linked to close-up images of those targets — everywhere else in the image is un-clickable. That’s because the coordinates of the areas defined in their image map match the locations of the sun and planets in the base image.

Here’s another example from Derek Fogge that uses uses maps to create more interesting click targets. It does use jQuery to style the areas on click, but notice the way a map overlays the image and coordinates are used to create the targets.

See the Pen
responsive image map demo
by Derek Fogge (@PositionRelativ)
on CodePen.

You can implement image maps on even more complex shapes too. In fact, let’s go back to the same target shape from the SVG example but using a raster image instead. We still want to link up the arrow and the bullseye but this time do not have SVG elements to help us out. For the bullseye, we know the X and Y coordinates and its radius in the underlying image, so it’s fairly easy to define a circle for the region. The arrow shape is more complicated. I used https://www.image-map.net to plot out the shape and generate the area for the image map — it’s made up of one polygon and one circle for the rounded edge at the top.

See the Pen
target image map
by Bailey Jones (@bailey_jones)
on CodePen.


What if you want to use CSS to define the shape of a custom click region without resorting to JavaScript for the styling? The CSS clip-path property provides considerable flexibility for defining and styling target areas on any HTML element.

Here we have a click area in the shape of a five-pointed star. The star is technically a polygon, so we could use a star-shaped base image and an image map with corresponding coordinates like we did in the previous image map example. However, let’s put clip-path to use. The following example shows the same clip-path applied to both a JPG image and an absolutely positioned hyperlink element.

See the Pen
by Bailey Jones (@bailey_jones)
on CodePen.

Browser support for clip-path has gotten much better, but it can still be inconsistent for some values. Be sure to check support and vendor prefixes before relying on it.

We can also mix and match different approaches depending on what best suits the shape of a particular click target. Here, I’ve combined the “close” shape using Bennet Freely’s clippy with an SVG hyperlink element to build the start of a clickable tic-tac-toe game. SVG is useful here to make sure the “hole” in the middle of the “O” shape isn’t clickable. For the “X” though, which is a polygon, a single clip-path can style it.

See the Pen
tic tac toe
by Bailey Jones (@bailey_jones)
on CodePen.

Again, beware of browser support especially when mixing and matching techniques. The demo above will not be supported everywhere.

CSS shapes without transparent borders

The clip-path property allowed us to apply a predefined shape to an HTML element of our choice, including hyperlink elements. There are plenty of other options for creating elements HTML and CSS that aren’t squares and rectangles — you can see some of them in The Shapes of CSS. However, not all techniques will effect the shape of the click area as you might expect. Most of the examples in the Shapes of CSS rely on transparent borders, which the DOM will still recognize as part of your click target even if your users can’t see them. Other tricks like positioning, transform, and pseudo elements like ::before and ::after will keep your styled hyperlink aligned with its visible shape.

Here’s a CSS heart shape that does not rely on transparent borders. You can see how the the red heart shape is the only clickable area of the element.

See the Pen
Clickable heart
by Bailey Jones (@bailey_jones)
on CodePen.

Here’s another example that creates a CSS triangle shape using transparent borders. You can see how the click area winds up being outside the actual shape. Hover over the element and you’ll be able to see the true size of the click area.

See the Pen
clickable triangle
by Bailey Jones (@bailey_jones)
on CodePen.

Hopefully this gives you a good baseline understanding of the many ways to create clickable regions on images and shapes, relying on HTML and CSS alone. You may find that it’s necessary to reach for JavaScript in order to get a more advanced interactive experience. However, the combined powers of HTML, CSS, and SVG provide considerable options for controlling the precise shape of your click target.

The post The Many Ways to Link Up Shapes and Images with HTML and CSS appeared first on CSS-Tricks.


, , , , ,

People Talkin’ Shapes

Codrops has a very nice article on CSS Shapes from Tania Rascia. You might know shape-outside is for redefining the area by which text is floated around that element, allowing for some interesting design opportunities. But there are a couple of genuine CSS tricks in here:

  1. Float shape-outside elements both right and left to get text to flow between them.
  2. You can set shape-outside to take an image and use shape-image-threshold to adjust where the text flows, meaning you could even use a gradient!

Shapes are in the water recently, as Heydon Pickering recently published a short video on using them. He also covers things like clip-path and canvas and such:

We recently moved our long-time page on (basically faking) CSS shapes over to a blog post so it’s easier to maintain.

Robin also wrote Working with Shapes in Web Design that digs into all this. So many tricks!

See the Pen 10c03204463e92a72a6756678e6348d1 by CSS-Tricks (@css-tricks) on CodePen.

When we talk about CSS shapes, it’s almost like we’re talking about values moreso than properties. What I mean is that the value functions like polygon(), circle(), ellipse(), offset(), path(), etc. are more representative of “CSS shapes” than the properties they are applied to. Multiple properties take them, like shape-outside, clip-path, and offset-path.

I once did a whole talk on this:

The only thing that’s changed since then is that Firefox started allowing clip-path: path() behind the flag layout.css.clip-path-path.enabled (demo).

And don’t forget Jen Simmons was talking about the possibilities of CSS Shapes (in her lab demos) years earlier!

The post People Talkin’ Shapes appeared first on CSS-Tricks.


, ,